15 research outputs found

    Comparison of Basis-Vector Selection Methods for Target and Background Subspaces as Applied to Subpixel Target Detection

    Get PDF
    This paper focuses on comparing three basis-vector selection techniques as applied to target detection in hyperspectral imagery. The basis-vector selection methods tested were the singular value decomposition (SVD), pixel purity index (PPI), and a newly developed approach called the maximum distance (MaxD) method. Target spaces were created using an illumination invariant technique, while the background space was generated from AVIRIS hyperspectral imagery. All three selection techniques were applied (in various combinations) to target as well as background spaces so as to generate dimensionally-reduced subspaces. Both target and background subspaces were described by linear subspace models (i.e., structured models). Generated basis vectors were then implemented in a generalized likelihood ratio (GLR) detector. False alarm rates (FAR) were tabulated along with a new summary metric called the average false alarm rate (AFAR). Some additional summary metrics are also introduced. Impact of the number of basis vectors in the target and background subspaces on detector performance was also investigated. For the given AVIRIS data set, the MaxD method as applied to the background subspace outperformed the other two methods tested (SVD and PPI)

    Array-Based Statistical Analysis of the MK-3 Authenticated Encryption Scheme

    Get PDF
    Authenticated encryption (AE) schemes are symmetric key cryptographic methods that support confidentiality, integrity and source authentication. There are many AE algorithms in existence today, in part thanks to the CAESAR competition for authenticated encryption, which is in its final stage. In our previous work we introduced a novel AE algorithm MK-3 (not part of the CAESAR competition), which is based on the duplex sponge construction and it is using novel large 16×16 AES-like S-boxes. Unlike most AE schemes, MK-3 scheme provides additional customization features for users who desire unique solutions. This makes it well suited for government and military applications. In this paper, we develop a new array- based statistical analysis approach to evaluate randomness of cryptographic primitives and show its effectiveness in the analysis of MK-3. One of the strengths of this method is that it focuses on the randomness of cryptographic primitive function rather than only on the randomness of the outpu

    Customization Modes for the Harris MK-3 Authenticated Encryption Algorithm

    Get PDF
    MK-3 is a new proprietary authenticated encryption algorithm based on the duplex sponge construction. To provide security autonomy capability, such that different users can have sovereign variants of the encryption algorithm, MK-3 is designed to be customizable. Two levels of customization are supported, Factory Customization and Field Customization. Customization is done by modifying functions and function parameters in the algorithm to yield differing cipher functions while preserving the algorithm’s security. This paper describes the MK-3 algorithm’s customization options and discusses results of testing designed to verify security autonomy among the customized variants

    Stochastic modeling of physically derived signature spaces

    No full text

    Geometric basis-vector selection meth ods and subpixel target detection as applied to hyperspectral imagery

    No full text
    Abstract-In this paper, we compare three basis-vector selection methods as applied to subpixel target detection. This is a continuation of previous research in which a similar comparison was performed based on an AVIRIS image. Our goal is to find out to what extent our previous observations apply more broadly to other images, more specifically, a HYDICE image used in this paper. Our target detection approach is based on generating a radiance target region using a physical model to generate radiance spectra as observed under a wide range of atmospheric, illumination, and viewing conditions. The advantage of this approach is that the resulting target detection is invariant to those changing conditions. For the purpose of target detection, we use a structured model to describe each image spectra as a linear combination of the target and background basis-vectors, and then we apply a matched subspace detector. Finally, we find ROC curves to describe the relationship between the detection rate (DR) and the false alarm rate (FAR). Due to a large number of cases considered, we use summary metrics to represent our results. The obtained results are quite different from those obtained in [1] for the AVIRIS image. The best method for generating the background basis vectors in the AVIRIS image was the MaxD method, while the SVD method proved to be best for the HYDICE image used in this paper. Further research is needed to find out the reasons for these differences. It is not surprising that different methods are optimal for different types of data. However, it would be useful to be able to recognize the optimal method without assuming knowledge of the targets in the image

    Pneumonia, Sinusitis, Influenza and Other Respiratory Illnesses in Acute Otitis Media-Prone Children

    No full text
    Background: Recurrent acute otitis media in the first years of life can be explained by immune dysfunction. Consequently, it would be expected that otitis-prone (OP) children would be more susceptible to other infectious diseases, especially respiratory infections, since a component of the immune problem involves nasopharyngeal innate immunity. Design: Cohort study with prospective identification of all physician-diagnosed, medically attended respiratory illness visits in children 6 months to 5 years of age to determine the incidence of pneumonia, acute sinusitis, influenza and other bacterial and viral infections among OP compared with non-OP (NOP) children. Tympanocentesis to microbiologically confirm acute otitis media disease. Results: Two hundred eighty-five children were studied. Thirty-nine met a standard definition of stringently defined OP (sOP) determined by tympanocentesis and 246 were NOP. sOP children had increased frequency of presumptive respiratory infections, pneumonia (6-fold higher, P \u3c 0.001), sinusitis (2.1-fold higher, P = 0.026) and influenza (2.9-fold higher, P = 0.002), compared with NOP children. Demographic and risk factor covariate-adjusted fold difference between sOP and NOP children for all respiratory infection illness visits was 2.4-fold (P \u3c 0.00001) at 6-18 months of age, 2.2-fold (P \u3c 0.00001) at 18-30 months of age and at age and 2.4-fold (P = 0.035) higher at 30 to 42 months. For both sOP and NOP children, more frequent medically attended respiratory infection illness visits from 6-18 months of age predicted more frequent visits experienced from 18-60 months of age. Conclusions: Clinicians should be aware of a significant increased likelihood of bacterial and viral respiratory infection proneness among OP children

    Statistical Analysis of the MK-3 Customizable Authenticated Encryption

    No full text
    To provide security autonomy capability, such that different users can have independent variants of the encryption algorithm, MK-3 is designed to be customizable. Two levels of customization are supported, Factory Customization and Field Customization. Customization is done by modifying functions and function parameters in the algorithm to yield differing cipher functions while preserving the algorithm\u27s security. The main goal of this work is to present the results from the statistical analysis of the customizable MK-3 encryption scheme, focusing on field customized mixers. We recall the main components of the MK-3 algorithm and overview a subset of available factory and field customizations for MK-3. We test the main instances of the field customized versions and give a general argument for their desired statistical properties expected from an encryption scheme
    corecore